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Part II. Detecting Dark Matter

Experimental detection of dark matter is one of the most exciting frontiers
in particle physics nowadays. The detection here does not mean the gravitational
evidence for dark matter mentioned in part I of the lectures. Those evidence tells
us that dark matter exist, but does not provide further insight on what the nature
of dark matter is – the puzzle remains. It is thus of great interest to look for other
evidence that may shed light on such a puzzle. In many on-going dark matter
searches, it is assumed that dark matter has additional interactions with standard
model particles that are not gravity. If this were the case, we can potentially
discover dark matter again through the new interaction in our laboratories. Here
laboratories include both group based experiments and telescopes running in the
space.

Although the new interactions are not guaranteed, many experiments have
been built to look for all kinds of dark matter. [Something new is out there, so
why wouldn’t you go and find it out!]

The following directions are drawing strong attentions of the field nowadays.
[This is a biased opinion from my own views (as a theorist).]

• Signal driven: many dark matter experiment (we think they are) have been
producing data. They see something (un)expected from time to time. You
may have heard of DAMA, positron excess, 3.5 keV line, etc, and recently
Xenon 1T. The significance of the anomalies is often less than 5σ. If you
decide any of them are likely to be the signal triggered by dark matter, it is
an interesting exercise to find reasonable theories behind them.

• Signal building: Many dark matter experiments are running or will soon be
built. Many other experiments whose original goal is not looking for dark
matter could be multi-purposed to look for dark matter. They may even
do better than those labelled as dark matter detectors. So, come up with
new theories and novel signals, and explore what is the best place to look for
them. This gives a broader range of speculation than ambulance chasing.

• Include some guiding principle: Ideally, an attractive theory for dark matter
should not only provide testable signals but also explain the origin of dark
matter relic abundance from early universe. Given our limited knowledge
about early universe, dark matter could originate from various mechanisms.
Discovering new production mechanism could lead to new predictions.

• Model building: Connect dark matter with other puzzles in particle physics,
such as baryon asymmetry, neutrino mass, muon g − 2 anomaly, strong CP
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problem, naturalness, blah blah ... It can be challenging to find a model that
explain several things simultaneously. Beware it might also lead to loss of
generality (and common interest).

None of these approaches are guaranteed to succeed. We do them because we are
curious physicists.

Chapter 3. Dark Matter Candidates

To talk about dark matter detection, we need to first decide on the dark
matter candidate.

Cosmological evidence for dark matter’s existence also tell us a few very basic
properties that dark matter must have: 1) Be cosmologically stable; 2) Be suffi-
ciently non-relativistic starting from the time of CMB; 3) May not carry color or
O(1) electric charge (this condition depends on dark matter mass).

Without additional information, the above requirements still allow for a large
number of possibilities. Here is a far-from-complete list of stuff that qualify as a
dark matter candidate.

Superheavy Dark Matter

• Black holes (LIGO saw them)

• MACHOs: BH, neutron stars, brown dwarfs, or even dark stars ...

• Magnetic monopoles

• Q-balls

• Nuggets of particle dark matter

• . . .

Particle Dark Matter

• WIMP

• Dark sector

• Sterile neutrinos

• Asymmetric dark matter

• accidentally stable and neutral anti-baryons (hyperthetical)

• . . .

Wave Dark Matter
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• Axions

• Ultralight dark photon

• . . .

Every dark matter candidate has its own interesting aspects. In the upcoming
two sections, we will discuss two very popular dark matter candidates, WIMP and
axion. They are leading dark matter candidates since the 1980s. Each of them
features a simple and generic production mechanism in the early universe which
requires additional dark matter interactions with know particles. The parame-
ter space for producing the correct dark matter relic abundance serve as a well
motivated target for experimental probes.

[That said, we still have not succeeded in finding dark matter again.]

Chapter 4. WIMP Dark Matter

Thermal dynamics in expanding universe:
Our early universe is not empty. It is comprised of all kinds of particles, in partic-
ular the standard model particles. Due to the standard model interaction, these
particles used to be in thermal equilibrium and have a common temperature. The
number density of a particle in thermal equilibrium is dictated by the mass and
temperature

n = g

∫
d3p

(2π)3
f(E, T ) ,

where f is the phase space density function and the factor g counts the number of
degrees of freedom for a particle (spin, color etc).
If a particle is in thermal equilibrium, then we have

f eq =
1

eE/T ± 1
,

for a fermion or boson, assuming the absence of a chemical potential. Einstein
tells us E =

√
|~p|2 +m2. Clearly, if particle is heavy m � T , its number density

will be exponentially suppressed. For relativistic particles (m� T ), we have

n =

{
gζ(3)T 3/π2 boson
(3/4)gζ(3)T 3/π2 fermion
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Thermal dynamics in expanding universe (continued):
It is also useful to introduce the energy, pressure and entropy densities

ρ = g

∫
d3p

(2π)3
Ef(E, T ) ,

p = g

∫
d3p

(2π)3

|~p|2

3E
f(E, T ) ,

s =
ρ+ p

T
.

For relativistic particles, we have

ρ =

{
π2gT 4/30 boson
(7/8)π2gT 4/30 fermion

s =

{
2π2gT 4/45 boson
(7/8)2π2gT 4/45 fermion

Consider a radiation dominated universe, when T � eV scale. We can compute
the total energy density in the universe, assuming only standard models contribute
and they have a common temperature,

ρtot =
π2

30
g∗T

4 ,

g∗ =
∑

i=bosons

gi +
7

8

∑
i=fermions

gi .

One should note that g∗ is a function of temperature. It only counts light particles
withm� T . Contribution from heavier ones are Boltzmann suppressed. Using the
Friedmann equation, we can derive the Hubble parameter using H2 = 8πGNρtot/3,

H '
1.66
√
g∗T

2

Mpl

,

where Mpl = 1/
√
GN .

It is also useful to introduce the total entropy density in the universe,

s =
2π2

45
g∗T

3 ,

where g∗s = g∗ if all temperatures are equal.

Under the homogeneous assumption, there is no heat transfer between different
parts of the universe. The expansion of our universe preserves total entropy, i.e.,
sa3 = constant.
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Production via thermal freeze out

We first discussion a generic production mechanism for the WIMP dark mat-
ter, called thermal freeze out. This story happens when the temperature of the
universe is around the weak scale.

To set the stage, first consider dark matter production in a fixed box with
volume V . One could write down a rate equation for the total number of dark
matter particles in the box

dN

dt
= (creation rate)− (depletion rate) ≡ (net production rate) . (1)

Let us assume that dark matter spatial distribution within the volume is homoge-
neous. We can define the number density of dark matter n. Under the homogeneity
assumption, N = nV . Thus we can divide both sides of Eq. (1) by the volume V
to obtain the rate equation for n,

dn

dt
=

(net production rate)

V
. (2)

The right-hand side is the net production rate per volume.

Next, let us consider a similar problem but the volume is changing with time,
V = V (t). In this case, we should be careful with dealing with the left-hand side
of Eq. (1). After replacing N with nV the time derivative not only hit on n but
also on V . In general, we should write

1

V

d(nV )

dt
=

(net production rate)

V
. (3)

With the above in mind we can consider the case of dark matter in an expand-
ing FRW universe. The time dependence of the volume in this case is parametrized
as V ∝ a3. Using H = ȧ/a, the left-hand side of Eq. (3) can be written as

dn

dt
+ 3Hn =

(net production rate)

V
. (4)

Consider the case where the net production rate vanishes. In this case we can
solve Eq. (5) using H = ȧ/a and obtain

dn

n
= −3

da

a
⇒ n ∼ a−3 ∼ 1

V
. (5)

This agrees with intuition that number density simply dilutes with the increasing
volume.



6

More formally, the left-hand side of Eq. (5) can be derived starting from the Liou-
ville theorem. The Liouville operator is defined as

L̂ = Pα ∂

∂xα
− ΓαβγP

βP γ ∂

∂pα
,

where the proper momentum pµ = (E, ~P ) is defined as P µ = dxµ

dλ
, λ is a Lorentz

invariant scalar. Γαβγ represent the Christoffel symbols. Treating x and p as inde-

pendent variables, we have dxµ

dλ
= L̂xµ and dPµ

dλ
= L̂P µ. The first equation simply

repeats the definition of pµ above and the second one is the geodesic equation of
particle in curved space.

The Liouville theorem states that the phase space distribution function f , a
function of xµ and P µ in general, must satisfy df

dλ
= L̂f = 0 in the absence of

particle creation and depletion.
We apply this theorem to the FRW universe. The homogeneous condition re-

quires that f is only a function of t = x0 and E = P 0. As a result

L̂f = E
∂f

∂t
− Γ0

αβp
αpβ

∂f

∂E
= E

∂f

∂t
− aȧ|~P |2 ∂f

∂E
= 0 .

The actual momentum is related to the proper momentum up to the expansion
parameter, ~p = a~P . As a result, we have

E
∂f

∂t
−H|~p|2 ∂f

∂E
= 0 .

We plug ∂f
∂t

into the integral g
∫

d3p
(2π)3

. This leads to the differential equation for n

∂n

∂t
= Hg

∫
d3p

(2π)3

1

E
|~p|2 ∂f

∂E
=
Hg

2π2

∫ ∞
0

|~p|2d|~p| 1
E
|~p|2 ∂f

∂|~p|
E

|~p|

=
Hg

2π2

∫ ∞
0

d|~p||~p|3 ∂f
∂|~p|

=
Hg

2π2

∫ ∞
0

d|~p|
[
∂(|~p|3f)

∂|~p|
− ∂|~p|3

∂|~p|
f

]
= −3Hg

2π2

∫ ∞
0

d|~p||~p|2f = −3Hn .

This reproduces Eq. (5) in the absence of particle creation/depletion.

We still need to know the right-hand side of the equation. In the case of
WIMP, the most relevant creation and depletion processes are 2 → 2 processes,
of the form χ(1) + χ̄(2) ↔ SM(3) + SM(4), where χ (χ̄) is the dark matter
particle (antiparticle), and SM represents a standard model particle. The bracket
and number following each particle name is just a labelling. In this case, the net
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production rate per volume on the right-hand side of Eq. (5) takes the form

dn1

dt
+ 3Hn1 =

∫
d3p1

(2π)32E1

d3p2

(2π)32E2

d3p3

(2π)32E3

d3p4

(2π)32E4

(2π)4δ4(p1 + p2 − p3 − p4)

|M1+2→3+4|2 ×
(
−f1(E1, T )f2(E2, T ) + f3(E3, T )f4(E4, T )

)
.

(6)

In Eq. (5), the amplitude square are NOT averaged over the any spin (color etc)
degrees of freedom. The functions f1,2,3,4 are phase space density functions for
particles 1,2,3,4, respectively.

To make a further simplification for dark matter freeze out calculation, we use
Maxwell-Boltzmann distribution instead,

f eq ' e−E/T , (7)

which is a good approximation at low temperatures (T < E). And correspondingly,

neq ' g
Tm2

2π2
K2(m/T ) , (8)

where K2 is the modified Bessel function of the second kind.

Another useful and realistic simplification is that standard model particles are
always in thermal equilibrium during the time of WIMP freeze out. Thus,

f3(E3, T )f4(E4, T ) = e−(E3+E4)/T = e−(E1+E2)/T = f eq
1 (E1, T )f eq

2 (E2, T ) , (9)

where in the second step, we used the energy conservation implied by the δ function.

With the above simplifications, we can rewrite Eq. (6) as

dn1

dt
+ 3Hn1 = −

∫
d3p1

(2π)3

d3p2

(2π)3
(σvMøller)1+2→3+4

×
(
f1(E1, T )f2(E2, T )− f eq

1 (E1, T )f eq
2 (E2, T )

)
.

(10)

where we used the standard definition of cross section

σ1+2→3+4 =
1

4f

∫
d3p3

(2π)32E3

d3p4

(2π)32E4

(2π)4δ4(p1 +p2−p3−p4)|M1+2→3+4|2 , (11)

with f =
√

(p1 · p2)2 −m2
1m

2
2, and introduce the Møller velocity,

4f = 4
√

(p1 · p2)2 −m2
1m

2
2 = 4

√
(E1E2 − ~p1 · ~p2)2 −m2

1m
2
2

= 4E1E2

√
(1− ~v1 · ~v2)2 − (1− |~v1|2)(1− |~v2|2)

= 4E1E2

√
(1− 2~v1 · ~v2 + (~v1 · ~v2)2)− (1− |~v1|2 − |~v2|2 + |~v1|2|~v2|2)

= 4E1E2

√
(~v1 − ~v2)2 + (~v1 · ~v2)2 − |~v1|2|~v2|2

= 4E1E2

√
(~v1 − ~v2)2 − (~v1 × ~v2)2

≡ 4E1E2vMøller .

(12)
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The Møller velocity is different from the relative velocity vrel ≡ |~v1−~v2| in general,
except for the special case where the scattering occurs face-to-face, i.e., ~v1×~v2 = 0.
In the non-relativistic limit, v1, v2 � 1, we have vMøller ≈ vrel.

For most of the discussions on dark matter freeze out, we will be dealing
with non-relativistic dark matter annihilation processes. Therefore, we will not
distinguish vMøller and vrel, and just call them v in short.

By using m1 = m2 = m is the dark matter mass, we have

f =
1

2

√
s(s− 4m2), vMøller = vrel = 2

√
s− 4m2

s
. (13)

In this case, it is useful to remember 4f = sv.

The right-hand side of Eq. (10) can be further simplified by making the ap-
proximation that the phase space distribution functions have the same same shape
as the thermal case, which is guaranteed by the χ + Ā → χ + B process. As a
result,

f(E, T ) = f eq(E, T )
n(T )

neq(T )
. (14)

Note T is a function of t in expanding universe. This is an important assumption
and allow us to get

dn1

dt
+ 3Hn1 = −

(
n1

neq
1

n2

neq
2

− 1

)∫
d3p1

(2π)3

d3p2

(2π)3
(σv)1+2→3+4f

eq
1 (E1, T )f eq

2 (E2, T )

= −
(
n1

neq
1

n2

neq
2

− 1

)∫
d3p1

(2π)3

d3p2

(2π)3
(σv)1+2→3+4e

−(E1+E2)/T

≡ −〈σvMøller〉 (n1n2 − neq
1 n

eq
2 ) .

(15)

For the process χ(1) + χ̄(2) ↔ SM(3) + SM(4) we consider, it often holds
that nχ = nχ̄. There is no particle-antiparticle asymmetry. In this case, we obtain
the final form of Botlzmann equation

dn

dt
+ 3Hn = −〈σv〉

(
n2 − n2

eq

)
, (16)

where we suppress the lower indices, understanding that n is the number density
of dark matter (or anti dark matter) particles.

In the last step of Eq. (15), we have introduced

〈σv〉 =

∫
d3p1
(2π)3

d3p2
(2π)3

(σv)1+2→3+4e
−(E1+E2)/T∫

d3p1
(2π)3

d3p2
(2π)3

e−(E1+E2)/T
. (17)
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The integral in the numerator of Eq. (17) can be further simplified into a
single integral. The result is∫

d3p1

(2π)3

d3p2

(2π)3
(σv)1+2→3+4e

−(E1+E2)/T =
T

64π4

∫ ∞
4m2

dss
√
s− 4m2σvK1

(√
s/T

)
,

(18)
where m is the dark matter mass, K1 is the modified Bessel function of the first
kind. Together with Eq. (8), we obtain

〈σv〉 =
1

16m4T [K2(m/T )]2

∫ ∞
4m2

dss
√
s− 4m2σvK1

(√
s/T

)
. (19)

Here we provide some details on how Eq. (18) is derived. Using Eqs. (11) and (12),

A ≡
∫

d3p1

(2π)32E1

d3p2

(2π)32E2

4fσe−(E1+E2)/T =

∫
d4P

(2π)4
(2π)4δ4(p1 + p2 − P )A

=

∫
d4P

(2π)4
4fσe−P

0/T

∫
d3p1

(2π)32E1

d3p2

(2π)32E2

(2π)4δ4(p1 + p2 − P ) .

In the second line we have used the fact that 4fσ only depends on the center
of mass energy of scattering which is given by s = P 2. The second integral is
identical to the two-body decay final state phase space integral. Because it is
Lorentz invariant, we can evaluate it by going to the reference frame where ~P = 0
thus s = (P 0)2. The second integral equal to

1

4π

pcm
P 0

=
1

8π

√
s− 4m2

s
,

where we used pcm = 1
2

√
s− 4m2.

Finally, we can do the P integral. Using 4f = sv, we have

A =
1

8π

∫
d4P

(2π)4

√
s(s− 4m2)σve−P

0/T

=
1

32π4

∫
dP 0

∫
|~P |2d|~P |

√
s(s− 4m2)σve−P

0/T .

Using the relation s = P 2 = (P 0)2 − |~P |2, we have ds = −2|~P |d|~P |, and thus

A =
1

64π4

∫
ds
√
s(s− 4m2) σv

∫ ∞
√
s

dP 0
√

(P 0)2 − se−P 0/T

=
T

64π4

∫
dss
√
s− 4m2 σv K1

(√
s/T

)
.

In the low temperature limit, when T � m, the Bessel function takes the
form K2(m/T ) ∼ e−m/T and K1 (

√
s/T ) ∼ e−

√
s/T . The s integral is dominated



10

by
√
s ∼ 2m, so all the e−m/T exponential factors cancel between upstairs and

downstairs in Eq. (19).

In general, σv can be Taylor expanded in the small velocity limit,

σv = a+ bv2 + · · · (20)

For S-wave annihilation, a 6= 0. For P or higher partial wave annihilations, a = 0.

We can plug this small velocity expansion into Eq. (19), using v = 2
√

(s− 4m2)/s
(see Eq. (13)), and complete the integral of each term analytically, which yields

〈σv〉 T�m−−−→ a

(
1− 3T

2m
+

3T 2

m2
+ · · ·

)
+ b

(
6T

m
− 12T 2

m2
+ · · ·

)
+ · · · (21)

Here we have made the small T � m expansion.

In the case of S-wave annihilation, a 6= 0 and the first term dominates and
is temperature independent, whereas for P -wave annihilation, a = 0 thus the
averaged cross section drops with temperature.

It is often useful to define a variable z = m/T to label time. In radiation
dominated universe, t = 1/(2H) ∼ T−2 ∼ z2. Thus we have dt/dz = 2t/z =
1/(zH). As a result, Eq. (16) becomes

dn

dt
+ 3Hn = zH

dn

dz
+ 3Hn = zH

(
dn

dz
+

3n

z

)
. (22)

It is useful to also introduce the yield Y ≡ n/s, where s is the total entropy
density of the universe (sorry for the degeneracy with earlier name for center of
mass energy square). In radiation dominated universe, s ∼ T 3 ∼ z−3. As a result,
one can show

dY

dz
=

1

s

(
dn

dz
+

3n

z

)
. (23)

Combining Eqs. (22) and (23), we can rewrite Eq. (16) as

dY

dz
= −〈σv〉s

Hz

(
Y 2 − Y 2

eq

)
(24)

Eq. (24) is very useful because both Y and z are dimensionless, and so is the
ratio 〈σv〉s/(Hz). The latter controls the strength of the source term.

• In early times, we typically have 〈σv〉sHz � 1 for WIMP dark matter.
As a result Y ' Yeq. Dark matter distribution closes follows the thermal
distribution value.
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• At late times z � 1 (corresponding to low temperature T � m), we have
s/(Hz) ∼ z−2. Eq. (21) tells us that 〈σv〉 does not grow with z. Therefore,
the ratio 〈σv〉s/(Hz) always decreases as time goes by. Finally, when it
drops to� 1, dark matter annihilation stops. The yield (or number per unit
coming volume) is a constant of time. This is called the thermal freeze
out mechanism of dark matter.

Fig. 1. Evolution of the yield in thermal freeze out mechanism.
The horizon axis label x is equivalent to z used in the text.

In practice, Eq. (24) can be solved numerically. The resulting z dependence
indeed agrees with the above two bullets.

We can do a better job in understanding the parametrical dependence in final
dark matter relic abundance. Let us first define the time zf which corresponds to
the point in Fig. 1 where Y starts to deviate from Yeq significantly. This corre-
sponds to

neq〈σv〉 = H , (25)

i.e., annihilation rate per particle is equal to the Hubble expansion rate. For
T < m, this equation reads approximately

g

(
mTf
2π

)3/2

e−m/Tf 〈σv〉 ∼
T 2
f

Mpl

. (26)

This is a rather complicated equation that allows us to find the ratio zf = m/Tf .
On obvious suppression on the right-hand side of the equation is the T/Mpl factor
(for WIMP dark matter m � Mpl). This small factor needs to be balanced by
something from the left-hand side. The exponential factor ends up being most
important for this job. In practice, for a wide range of WIMP parameter space,
we have zf = m/Tf ∼ 20.

Let us further introduce the notation

λ ≡ 〈σv〉s
Hz

∣∣∣∣
z=1

, (27)
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which is z independent. For S-wave annihilation, Eq. (24) can be written as

dY

dz
= − λ

z2

(
Y 2 − Y 2

eq

)
. (28)

(For P -wave annihilation, the power of z in the denominator is 3. See Eq. (21).)
For z � zf , we have Y � Yeq, and the above equation is approximately

dY

Y 2
' −λdz

z2
. (29)

Integrating from z = zf to +∞, we obtain

−
(

1

Y (∞)
− 1

Y (zf )

)
' λ

(
1

∞
− 1

zf

)
. (30)

Because z = zf , Y (zf ) ' Yeq(zf ) is still much larger than Y (∞), we find

Y (∞) ' zf
λ
. (31)

We can use this result to derive the dark matter relic abundance today

Ω =
s0Y (∞)m

ρ0
c

, (32)

where s0 = 2891 cm−3 and ρ0
c = 1.053 × 10−5h2 GeV/cm3 are the entropy density

and critical energy density of the universe today.

By using s(m) ∼ m3 and H(m) ∼ m2/Mpl, we obtain

Ωh2 =
s0h

2zf
ρ0
cMpl

1

〈σv〉
≈ 0.12×

(
10−26 cm3/s

〈σv〉

)
. (33)

This is a remarkable relation.

First, it shows that dark matter relic abundance is inversely proportional
to its annihilation rate. Thermal freeze out occurs when the universe expansion
rate is higher than annihilation rate per particle, i.e., when there is no time for a
dark matter particle to find an antiparticle to annihilate. The faster dark matter
annihilates, the longer it could remain in thermal equilibrium and trace the thermal
distribution curve in Fig. 1, thus the smaller the thermal suppression factor (e−m/T )
is, the later freeze out occurs, and the fewer particles are left over.

Second, Eq. (33) tells us a cosmologically preferred value for dark matter
annihilation cross section, 〈σv〉 ' 10−26 cm3/s. Prediction of the annihilation cross
section is model dependent, but we can consider the following Feynman diagram
and a “generic” dimensional analysis, where

〈σv〉 ∼ g4

m2
. (34)
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The numbers works out perfectly for g ∼ 0.3 and m ∼ TeV, i.e., if dark matter
has a mass near the electroweak scale and participates standard model weak in-
teractions. One should note this is a pure coincidence. The above cosmological
calculations do not require the knowledge of weak interaction scale and coupling
strength. In the end, we find a nice reason to give weak interaction to dark mat-
ter. This coincidence is called the WIMP miracle. WIMP stands for “weakly
interacting massive particle”.

It is also worth pointing out that for heavier WIMP dark matter, Eq. (34)
tells us that the annihilation cross section gets lower and dark matter will be
overproduced. On the other hand, if the WIMP dark matter is much lighter than
the weak scale, then the dimensional analysis in Eq. (34) breaks down because
the Z boson mass becomes important. In this case, the cross section goes as
〈σv〉 ∼ g4m2/M4

Z . The annihilation cross section becomes smaller for lighter dark
matter, not larger. And dark matter will be overproduced. For given value of g,
the annihilation cross section though Z boson is peaked when dark matter mass
is around the weak scale.

As a further generalization, if one is open minded about new physics, new me-
diators other than Z boson could be introduced. A well known example is the dark
photon, which is often much lighter than the Z boson, and its coupling strength
gd can be much smaller than that of weak interaction, gd � g. In this context, we
can have light dark matter with correct relic abundance. The annihilation cross
section is similar to Eq. (34) but with the new coupling, 〈σv〉 ∼ g4

d/m
2. For suf-

ficiently small gd, we can have dark matter mass even below a GeV scale. This
is one of the often called dark sector models. Compared to WIMP, there are
more new particles and more unknown parameters. The main interests in dark
sector models with low mass scale are for new signals. We will not elaborate in
this direction too much. If you are interested, check out this recent document
https://arxiv.org/pdf/1707.04591.pdf.

Next we will discuss how to detect WIMP dark matter. The picture in Fig. 2
below is a nice summary of various approaches. It is a sketch of what we will
discuss next. If time goes from left to right, the DM +DM → SM +SM process
is exactly the freeze out process we just considered.

https://arxiv.org/pdf/1707.04591.pdf
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Fig. 2. Interplay among various reactions of WIMP dark matter.

Direct detection

As discussed in Part I of this lecture, our Milky Way galaxy is comprised of a
halo of dark matter. Our solar system lives in the middle of the halo. It is located
at about 8 kpc away from the galactic center and orbits around it. Because of the
orbiting, a “wind” of dark matter is blowing into our labs, at speed v ∼ 10−3c.
This sounds exciting and inspires people to consider possible ways of detecting
dark matter particles that visit our labs. For WIMP dark matter, its mass scale
is roughly set at weak scale by relic density. Direct detection experiments takes
advantage of these. We choose a quiet place (usually deep underground, less cosmic
rays) and build a low-noise detector as large as possible, and wait. Target materials
that fill up the detector include xenon, argon, germanium, etc.

The particle physics process we are after is elastic scattering,

χ+ A→ χ+ A , (35)

where we denote the nucleus of the target material as A. The initial state nucleus
is at rest, whereas after the scattering with incoming dark matter, it receives a
recoil energy, ER. Interestingly, the typical mass of nucleus A is also around the
weak scale. Because the incoming dark matter particle is non-relativistic, the
momentum transfer is of order |~q| ∼ µAv. µA = mM/(m+M) is the reduced mass
of the χ − A system, where m is dark matter mass and M is nucleus mass. The
corresponding recoil energy is of order

ER =
|~q|2

2M
∼ weak scale× v2 . 100 keV . (36)

Because the recoil energy is much lower than the nuclear binding energy, it is more
likely that the whole nucleus recoils coherently rather than breaking apart (or get
excited). This justifies the starting point of considering elastic scattering.
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Fig. 3. Kinematics in CM frame, where |~q|2 = 2µ2
Av

2(1− cos θ), |~P |2 = 2µ2
Av

2(1 + cos θ).

What we care about experimentally is the rate of the scattering. To my
knowledge, in particle physics a rate (per particle) is always calculated using the
following formula

R1 ∼ nσv . (37)

From the viewpoint of a target nucleus, σ is the χ − A scattering cross section,
n is the local dark matter number density, and v is the Møller velocity in general
which is simply the incoming dark matter velocity because target is at rest. I put
a tilde here but not equal sign because the right-hand side are often averaged over
certain distribution. Here it will be the dark matter velocity distribution. In our
galaxy, not all dark matter travel with equal velocity v.

Eq.(37) is the per-particle rate. We are most interested in the overall scat-
tering rate happening in the detector. Thus we need to multiply it with the total
number of nucleus target, which is proportional to the total detector mass. The
total rate is then

R = NAnχ

∫ vmax

0

d3~vf(v)v

∫ Emax
R (v)

0

dER
dσ

dER
. (38)

where Emax
R (v) = 2µ2

Av
2/M is the largest recoil energy in lab frame for fixed dark

matter velocity v. It is derived using

|~q|2 ' −q2 = 2µ2
Av

2(1− cos θ) , (39)

where θ is the scattering angle in the center of mass frame (see Fig. 3), 0 ≤ θ ≤ π,
and

ER =
|~q|2

2M
=
µ2
Av

2(1− cos θ)

M
. (40)

Because v is the dark matter velocity in view of the detector, the above velocity
distribution is defined in the rest frame of solar system 1 and takes the form

f(v) = Ce−|~v+~v�|2/v20Θ(vesc − |~v + ~v�|) , (41)

1It will be more fun to take into account of earth’s motion around the sun. See comments later.
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where Θ is a step function. Number-wise, vesc = 550 km/s, v� = 220 km/s, v0 =
235 km/s. The normalization factor C ensures

∫ vmax

0
d3~vf(v) = 1.

For given v the angle θv between ~v and ~v� must satisfy

cos θv ≤ Min

{
v2

esc − v2 − v2
�

2vv�
, 1

}
. (42)

And because cos θv ≥ −1, we must have v ≤ vmax = vesc + v�. With these
knowledge, we can perform the ~v integral in Eq. (38).

Another intricacy involved in the rate calculation is that all dark matter de-
tectors have a threshold for detection Eth. In other words, the nuclear recoil energy
has to be above the threshold in order for the signal to be detected. So the ER in-
tegral in Eq. (38) should be restricted to the range Eth ≤ ER ≤ Emax

R (v). Because
ER is the quantity we directly measure experimentally, it is more useful to rewrite
Eq. (38) by interchanging the two integrals,

R = NAnχ

∫ Emax
R (vmax)

Eth

dER

∫ vmax

vmin(ER)

d3~vf(v)
dσ

dER
v . (43)

As will be derived below, the differential cross section dσ/dER goes as 1/v2 (see
Eq. (58)). Thus the relevant velocity integral is

g(ER) =

∫ vmax

vmin(ER)

d3~v
f(v)

v
. (44)

For given ER, the lower bound of velocity is

vmin(ER) =

√
MER
2µ2

A

. (45)

Because ER ≥ Eth, how good your detector determines the size of the velocity
integral. The higher Eth is, the lower the fraction of dark matter that have suffi-
ciently high velocity to trigger large enough ER. The following plot (Fig. 4) shows
this interplay.
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Fig. 4. Velocity integral in Eq. (44) as a function of ER, for Xenon target and DM mass m = 100GeV.

Next, let us do some particle physics and calculate the differential cross section
dσ/dER. This is clearly model dependent and we need a Lagrangian to proceed.
As an example, we continue to explore the Z-boson exchange between WIMP dark
matter and nucleus. Starting from quark level, the relevant interacting Lagrangian
is

L =
∑
q=u,d

q̄γµ(gqV + gqAγ5)qZµ + χ̄γµ(gχV + gχAγ5)χZµ , (46)

where the standard model couplings are

guV =
e

sin θw cos θw

(
1

4
− 2

3
sin2 θw

)
, guA = − e

sin θw cos θw

1

4
,

gdV =
e

sin θw cos θw

(
−1

4
+

1

3
sin2 θw

)
, gdA =

e

sin θw cos θw

1

4
.

(47)

Because the scattering occurs at momentum transfer much lower than the Z mass,
we can integrate out the Z boson and obtain the following leading effective La-
grangian for dark matter-quark interactions

Leff =
1

M2
Z

∑
q=u,d

[
q̄γµ(gqV + gqAγ5)q

] [
χ̄γµ(gχV + gχAγ5)χ

]
. (48)

There are different Lorentz structures for the coupling (V V , AA, V A, AV ). To
proceed, we focus on the V V operator for the interaction, which gives the dominant
contribution to spin-independent dark matter scattering, 2

Leff =
∑
q=u,d

λq

(
q̄γµq

)(
χ̄γµχ

)
, (49)

where λq =
gqV g

χ
V

M2
Z

. This is the quark level operator.

Next, we go to the nucleon level by doing a matching. In other words, we
evaluate the nucleon matrix element of the above quark-level operator

MNN =
∑
q=u,d

λq

〈
N
∣∣∣q̄γµq∣∣∣N〉(χ̄γµχ) , (50)

where N = p, n stands for quarks and protons. For the quark operator considered
here, its matrix element is relatively simple. A vector current corresponds to the

2The AA operator contributes to the spin-dependent scattering, whereas the contribution from
the V A and AV operators are more suppressed. For a systematic analysis of the role of various
operators in dark matter scattering, see https://arxiv.org/pdf/1305.1611.pdf.

https://arxiv.org/pdf/1305.1611.pdf
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number of quarks, and we know that proton is made of (uud) and neutron is made
of (udd). This allows us to obtain 3〈

p
∣∣∣ūγµu∣∣∣ p〉 = 2ūpγ

µup ,
〈
p
∣∣∣d̄γµd∣∣∣ p〉 = ūpγ

µup ,〈
n
∣∣∣ūγµu∣∣∣n〉 = ūnγ

µun ,
〈
n
∣∣∣d̄γµd∣∣∣n〉 = 2ūnγ

µun ,
(51)

As a result, the matrix element of the quark level operator matches to the following
effective nucleon-dark matter operators

Leff =
∑
N=p,n

λN

(
N̄γµN

)(
χ̄γµχ

)
, (52)

where λp = 2λu +λd, λd = λu + 2λd. As an interesting fact, using the quark vector
couplings in Eq. (47), and making the approximation sin2 θw = 0.23 ' 1/4, we find
λp ' 0. The vector coupling of Z boson is almost proton-phobic.

Finally, we still need to go to the nucleus level. As discussed below Eq. (36),
in direct detection, WIMP scatters coherently with the whole nucleus. Therefore,
we can treat the nucleus as a point like particle which also has its Lagrangian.
Similar to the procedure above, the nuclear matrix element of nucleon-level vector
current operator counts the number of proton or neutron inside the nucleus,〈

A
∣∣∣p̄γµp∣∣∣A〉 = ZūAγ

µuA ,
〈
A
∣∣∣n̄γµn∣∣∣A〉 = (A− Z)ūAγ

µuA , (53)

where Z,A are the atomic and mass numbers of the target nucleus. Here we
proceed by assuming the nucleus is a fermion field. We can derive the same results
by assuming the nucleus is a scalar field (spin does not matter for non-relativistic
quantum mechanics). Eq. (53) finally allows us to write down the nucleus-dark
matter effective Lagrangian,

Leff = λ
(
ĀγµA

)(
χ̄γµχ

)
, (54)

where λ = Zλp + (A− Z)λn.

We can proceed the calculation of the dark matter-nucleus scattering cross
section using the effective Lagrangian Eq. (54). In the non-relativistic limit (v �
c), the spin-averaged matrix element is

|M|2 ' 16λ2m2M2 . (55)

As a reminder, m is dark matter mass and M is nucleus mass. The corresponding
differential cross section is

dσ

dt
=

1

64πs

1

|~p1cm|2
|M|2 ' λ2

4πv2
, (56)

3It can be a lot harder for other operators. Usually we need lattice calculation input.
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where we have made the approximations s ' (m+M)2 and |~p1cm| ' µAv. t is the
Mandelstam variable and is related to the recoil energy as

t = q2 ' −|~q|2 = −2MER . (57)

As a result, we can derive the differential cross section with respect to ER, which
is used in the rate equations (38) and (43).

dσ

dER
' λ2M

2πv2
. (58)

This result verifies an earlier statement that dσ/dER ∼ 1/v2. However, it is not
the full story yet. Because we consider elastic scattering here, the above differential
cross section should be supplemented by a nuclear form factor,

dσ

dER
' λ2M

2πv2
F 2(|~q|) . (59)

Most commonly used is the Helm form factor

F (|~q|) =

[
3j1(|~q|R1)

|~q|R1

]2

exp(−|~q|2s2
A) , (60)

where R1 =
√
R2
A − 5s2

A, RA = 1.2 fmA1/3, and sA ' 1 fm. A picture of the Helm
form factor is shown below, as a function of the recoil energy ER. Clearly, at high
momentum transfer (thus high ER), it is more likely to break up the nucleus thus
the Helm factor, that characterize the probability of elastic scattering, becomes
more suppressed.
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0.001

1

ER (keV)

|F
H
em
l
2

Fig. 5. The Helm form factor square as a function of ER, for Xenon target.

To further make use of the above result, let us follow the approximation that
for Z mediated V V coupling, λp ' 0. Thus 4

λ ' (A− Z)λn . (61)

4In alternative models, for example Higgs mediated interaction, we could have λp = λn and thus
the relation λ = Aλp = Aλn.
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Using the nucleon level effective Lagrangian, we can also calculate the cross section
for dark matter-neutron scattering,

σχn =
λ2
nµ

2
n

π
, (62)

where µn = mmn/(m+mn). We can plug this into Eq. (59) and obtain

dσ

dER
=

(A− Z)2σχnM

2µ2
nv

2
F 2(|~q|2) ' A2(A− Z)2σχn

2Mv2
F 2(|~q|) . (63)

In the second step, we make the approximation that m � mn (valid for WIMP)
thus µn ' mn, and the mass relation M ' Amn.

Pluggin Eq. (63) into (43), we find a direct relation between the signal rate
and the nucleon level dark matter scattering cross section,

R = NA
ρ�DM

m

A2(A− Z)2σχn
2M

∫ Emax
R (vmax)

Eth

dERF
2(
√

2MER)

∫ vmax

vmin(ER)

d3~v
f(v)

v
.

(64)
Here we also introduced local dark matter mass density ρ�DM = 0.3 GeV/cm3.

This is a very useful result, with different moving parts nicely factorized. The
velocity integral encodes the astrophysics information (velocity distribution). The
recoil energy integral encodes the detector information (energy threshold). All
the elementary particle physics information is encoded in the nucleon-level cross
section σχn. Once a detector is built and run for a period, we can directly translate
the measurement of signal rate into a measurement of σχn. The result can then be
used to constraint various dark matter models.

Let us complete the Z mediated interaction example by considering the Xenon
1 ton detector, which corresponds to NA = 4.6×1027. The typical energy threshold
is 2 keV. We choose the dark mass to be 100 GeV. In this case, we can complete
the two integrals in Eq. (64) which gives 1.2 × 104 keV. The local dark matter
density is nχ = 0.3 GeV/cm3/mχ = 0.003 GeV/cm3. After a year of running, we
find

R ∼ 1045 cm−2σχn . (65)

Dark matter detectors have very low noise. If there are a few signal events, we
would have claimed victory. So far, no discovery has been made, unfortunately.
That allows us to set upper limits on the nucleon level dark matter scattering cross
section

σχn . 10−45 cm2 , (66)

for a 100 GeV WIMP. This estimate is consistent with the experimental results so
far. See Fig. 6 below.
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On the other hand, for WIMP dark matter with mass 100 GeV and its coupling
to Z around 0.1. The χ-neutron scattering cross section is about

σχn . 10−37 cm2 , (67)

which is well ruled out experimentally.

Last but not least, we comment on the dark matter mass dependence in the
result. If dark matter mass m is much lower than the target nucleus mass, from
Eq. (45), we get vmin(ER) ∼ 1/m. For very light dark matter, the minimal velocity
is very high, thus the velocity integral is suppressed, so is the signal rate. The
corresponding constraint will become exponentially weaker than that in Eq. (66).
On the other hand, for dark matter much heavier than the target nucleus mass,
the minimal velocity is m independent. R is inversely proportional to m only
through the local dark matter density. In this case, the direct detection constraint
weakens linearly for large dark matter mass. These features are indeed shown by
the experimental results below.

Fig. 6. Constraints on spin-independent dark matter-nucleon scattering cross section.

Indirect detection

Another approach to search for dark matter is indirect detection. Our galactic
halo is approximately a static state for a long time. It is not expanding. As a result,
a dark matter particle inside the halo could encounter an antiparticle (if the latter
exists at all) once in a while, and they could annihilate. In the case of WIMP dark
matter, the annihilation cross section is closely related to its relic density, through
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the thermal freeze out mechanism discussed earlier. This provides a nice target for
indirect searches.

The annihilation of dark matter can result in various standard model particles.
Many of the latter are unstable and will further decay. Stable final state particles
that can travel across our galaxy include γ, e±, ν, p/p̄, deuterons, etc. Near
the earth, they appear as cosmic rays. We could detect them with satellites or
ground-based telescopes.

We need a good knowledge of cosmic ray background in order to probe the new
contribution from dark matter, which we often do not. Sometimes, special feature
in the cosmic ray energy spectrum (such as a peak) could be argued as evidence
for certain dark matter candidates. However, it many astrophysical bodies and
processes (e.g. pulsars) could produce those too. The most conservative thing one
could do is to require the cosmic ray flux predicted from a dark matter model does
not exceed what we see. This leads to conservative constraints on the dark matter
annihilation rates.

Because our galaxy has a magnetic field, electrons and protons do not travel in
straight lines. These particles do not point back to the source. In contrast, photons
and neutrinos do. Neutrinos are only weakly interacting thus its constraints are
usually weaker in spite of very large neutrino detectors exist (such as IceCUBE
and Super-K). Therefore, we proceed the discussion with photons.

For WIMP dark matter, the energies of photons from the annihilation is typ-
ically peaked at GeV to weak scale. In this case, photons appear as Gamma rays.

Let us further parametrize the χχ̄ annihilation cross section times Møller (or
relative) velocity 5 to be

〈σv〉 . (68)

Here the angle bracket stands for averaging over the dark matter velocity distri-
bution. For S-wave annihilation, 〈σv〉 = σv.

We also assume each χχ̄ annihilation produces Nγ gamma rays.

We can the write down the rate for dark matter annihilation (recall nσv is
the rate per particle) in an infinitesimal volume dV = d3~r at position ~r (galactic
center is the origin) in our galaxy

dR(~r) =

(
ρDM(r)

2m
〈σv〉

)
×
(
ρDM(r)

2m
d3~r

)
, (69)

where we have assume the dark matter distribution around the galactic center is
isotropic, thus ρDM(~r) = ρDM(r). The first bracket stands for the annihilation rate
per χ particle, which sees a number density of χ̄ equal to ρDM(~r)/(2m). The second

5Dark matter is non-relativistic in the galaxy.
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bracket stands for the total number of χ particles in the volume dV . The extra
factors of 2 arise because we assume that χ and χ̄ are different particles and each
comprises half of the dark matter energy density.

The photons produced from this small volume travels isotropically in all di-
rections. Assuming the volume dV is located at distance l from us, the flux of
photon we see from dV is

dΦ =
NγdR

4πl2
. (70)

Clearly, l is a function of ~r.

We need to integrate over the whole galaxy volume to get the total flux

Φ =

∫
d3~r

NγdR

4πl2
= 〈σv〉

∫
d3~r

Nγ

4πl2

(
ρDM(r)

2m

)2

. (71)

Interestingly, we have already factorized the particle physics quantity 〈σv〉 out of
the space integral.

Next, instead of performing the d3~r integral, we change it into the d3~̀. It is
trivial to prove that the Jacobian determinant for this coordinate transformation
is 1. At the same time, we express r as a function of ~l = (l, θ, φ),

r(l, θ) =
√
r2
� + l2 − 2r�l cos θ . (72)

See the geometric picture below.

Fig. 7. Geometry.
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The total flux formula then becomes

Φ =
〈σv〉

16πm2
Nγ

∫
d3~l

ρDM(r(l, θ))2

l2

=
〈σv〉

16πm2
Nγ

∫
dΩ

∫
l.o.s.

dl ρDM(r(l, θ))2 .

(73)

The dl integral is called the line-of-sight integral. The range of the integral dΩ
corresponds to the area of view of a given telescope.

Given the above flux near earth, if we build a telescope with area S, then the
gamma ray signal we capture per unit time is simply ΦS.

In practice, it is often more useful to calculate the differential flux with respect
to the photon energy.

dΦ

dEγ
=
〈σv〉

16πm2

dNγ

dEγ

∫
dΩ

∫
l.o.s.

dl ρDM(r(l, θ))2 , (74)

where dNγ/dEγ is the photon energy spectrum per each pair of χχ̄ annihilation.
This spectrum can be calculated using packages like PYTHIA, or PPPC4 (at this
link: https://arxiv.org/pdf/1012.4515.pdf).

Based on the dark matter density profile discussed in Part I, the dominant
contribution to the flux usually comes from dark matter annihilation near the
galactic center. However, sometime it is also useful to look elsewhere, for example
dark matter annihilation in dwarf galaxies.

Without further elaborations, we conclusion the discussion here by showing a
couple of indirect detection results from the Fermi collaboration. For more detail,
see https://arxiv.org/pdf/1503.02641.pdf.

Fig. 8. Fermi-LAT constraint on WIMP dark matter.

https://arxiv.org/pdf/1012.4515.pdf
https://arxiv.org/pdf/1503.02641.pdf
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Colliders Briefly.

Chapter 5. Axion Dark Matter

Axion represents another class of well motivated dark matter candidates that
are ultralight and behaves like coherent waves instead of particles. Gravitationally,
a halo to axion dark matter or WIMP dark matter can look the same, although
they require dramatically different approaches for detection. The theory and phe-
nomenology of axion dark matter is a very broad and fast evolving subject. We
will only cover a small chapter of it here.

Axion dark matter in our universe should be treated as a classical coherent
wave instead of particle. The thermal dynamical descriptions introduced at the
beginning of Chapter 4 do not apply. To discuss axion cosmology, we need to
derive the equation of motion for a wave and the corresponding energy density.
The action for axion field (a real scalar field) is

S =

∫
d4x
√
−g
(

1

2
gµν∂µa∂νa+ V (a)

)
. (75)

where g is the determinant of the metric tensor gµν . We call the axion field
a. Unfortunately, it is has a degeneracy in name with the cosmic scale fac-
tor defined in the metric (in Part I of the lecture). To make the distinguish-
ment, here we will call the latter R(t). The FRW metric tensor is written as
gµν = diag{1,−R(t)2,−R(t)2,−R(t)2} in Cartesian coordinates, and the Hubble
parameter is H = Ṙ/R. With these notations, in the FRW cosmology, the action
takes the form

S =

∫
d4xR3

(
1

2
ȧ2 − 1

2R2
~∇a · ~∇a− V (a)

)
. (76)

We can derive the equation of motion for the axion field by give it a small pertur-
bation and require the action to be invariant

δS =

∫
d4xR3

(
ȧδȧ− 1

R2
~∇a · δ~∇a− V ′(a)δa

)
=

∫
d4x

(
− ∂

∂t
(R3ȧ) +R∇2a−R3V ′(a)

)
δa

=

∫
d4xR3

(
−ä− 3Hȧ+

1

R2
∇2a− V ′(a)

)
δa .

(77)

In the second step we have integrated by parts and drop the surface terms. Re-
quiring δS = 0 for any δa we get

ä+ 3Hȧ− 1

R2
∇2a+ V ′(a) = 0 . (78)
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This is the equation of motion of a real scalar field in an expanding FRW universe.

Next, we assume the axion field is homogeneous at the cosmology level, barring
the small primordial fluctuations, i.e., ∇a = 0. (You can think of the axion field
filling the whole universe is “breathing” with time.) Let us further assume that the
axion potential only contains the mass term, V (a) ' 1

2
m2a2. All the interactions

with higher powers of a are negligible. In this case, the equation of motion becomes

ä+ 3Hȧ+m2a = 0 . (79)

It is well motivated to consider the solution to this equation of the form

a(t) = A(t) sin
(
ω(t)t+ δ

)
, (80)

where δ is a constant phase shift, and A(t) is the amplitude of axion field oscillation.
In this case, we obtain[

Ä+ 3HȦ+ (m+ ω + ω̇t)(m− ω − ω̇t)
]

sin
(
ω(t)t+ δ

)
+
[
2(ω + ω̇t)Ȧ+ ((3Ht+ 2)ω̇ + 3Hω + ω̈t)A

]
cos
(
ω(t)t+ δ

)
= 0 .

(81)

For this equation to hold for all t, the coefficients of sine and cosine terms must
vanish individually. Let us further make the assumption that the ω̇ and ω̈ terms
are negligible (to be justified by Eq. (85) below). In this case, we obtain two
equations

Ȧ = −3

2
HA ,

Ä+ 3HȦ− ω(t)2A+m2A = 0 .
(82)

From the first equation and H = Ṙ/R, we derive

A(t) ∼ R(t)−2/3 . (83)

Plugging the first equation into the second one, we find(
−3

2
Ḣ − 9

4
H2 − ω(t)2 +m2

)
A = 0 . (84)

Using H ∼ 1/t, the first term is of order H2. In the limit H � m (remember H
decreases in the history of our universe), we derive

ω(t) ' m , (85)

which is indeed time independent at leading order. As a result, the axion field
evolves with the expansion of universe as

a(t) ' Ai

(
Ri

R(t)

)3/2

sin
(
mt+ δ

)
, (86)
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where Ri corresponds to an earlier time than t when the axion field value is ai.

The energy density stored in the axion field can be calculated using the Hamil-
tonian density,

ρa = H = ȧ
∂L
∂ȧ
− L =

1

2
ȧ2 + V (a) =

1

2
m2A2

i

(
R(ti)

R(t)

)3

. (87)

Clearly, the energy density of a field scales as R−3 with the expansion of the
universe. Thus it qualifies to be a matter species, and could serve as the dark
matter candidate.

Eq. (87) only tells us how the energy density of axion evolves at later stage of
the universe when H � m. It does not explain why the initial ai is nonzero. To
address this question, we need to know how axion interacts in the early universe.

The motivation for introducing the axion is to address the strong CP problem.
Here is a brief overview of it. As we know, in the standard model, fermions (quarks
and charged leptons) obtain their masses from electroweak symmetry breaking. In
general, the masses are complex because the Yukawa couplings are complex. In
order to do calculations, we usually perform a field redefinition to make the fermion
mass real. In particular, starting from a complex mass term for a quark

−mqe
iθq q̄LqR + h.c. , (88)

we can redefine the phase of qL, qR fields to make the mass term real

qL → qLe
iθq/2, qR → qRe

−iθq/2 . (89)

However, such a transformation is not for free. It generates another term (called
the θ-term) in the Lagrangian

δL = −θq
αS
8π
Ga
µνG̃

aµν , (90)

where αS = g2
3/(4π) is the strong interaction fine-structure constant.

It we take the above procedures to make all the quark masses real, the θ-term
in the Lagrangian will take the following form

δLθ-term = −θ̄αS
8π
Ga
µνG̃

aµν , θ̄ = θ +
∑
q

θq = θ + arg detMq , (91)

where θ is the coefficient of the original θ-term.
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The best way to see how Eq. (90) is generated is to first assume that θq has a mild
spacetime dependence. In this case, the chiral transformation Eq. (89) will lead to
an extra term in the Lagrangian

δL =
1

2
(∂µθq)q̄γ

µγ5q . (92)

It is generated from the quark kinetic terms q̄Li��∂qL + q̄Ri��∂qR, where after the field
phase redefinition, the derivative acts on θq.

The coupling of ∂µθq to an axial current of quark generates a Wess-Zumino term at
loop level, through the triangle diagrams shown above, where the ⊗ vertex stands
for the axial current. It is highly nontrivial to perform the loop calculation. We
just present the result here,

δL =
1

2
(∂µθq)

α2
S

4π
Kµ ,

Kµ = 2εµναβ
(
Gν∂αGβ −

1

3
g3f

abcGa
νG

b
αG

c
β

)
.

(93)

This term is closely related to the Adler-Bell-Jackiw anomaly of U(1)A with respect
to SU(3)c. After differentiation by parts and drop the total derivative term, we
obtain

δL = −α
2
S

8π
θqG

a
µνG̃

aµν , (94)

where G̃aµν ≡ 1
2
εµναβGa

αβ. In PHYS 6601, we have proved that ∂µK
µ = Ga

µνG̃
aµν .

This delivers Eq. (90).

There is an important physical consequence of the θ-term Lagrangian. It
contributes to the neutron electric dipole moment (EDM). The actual calculation
of neutron EDM from θ-term requires non-perturbative methods because neutron is
a composite QCD state. Using naive dimensional analysis, we would get the EDM
dn ∼ eθ/mn ∼ 10−14θ e cm. The more correct answer is dn ∼ 2.4× 10−16θ e cm. In
contrast, the latest experimental constrain on neutron EDM is dn < 3×10−26 e cm
(from hep-ex/0602020). This requires

θ . 10−10 . (95)

Why a dimensionless parameter must be so close to zero is the strong CP problem.

The leading solution to the strong CP problem is to introduce an axion field

hep-ex/0602020


29

that also couples to the GµνG̃
µν operator

− a

fa

αS
8π
Ga
µνG̃

aµν . (96)

Combining it with Eq. (91), we have

Lθ-term = −
(
θ̄ +

a

fa

)
αS
8π
Ga
µνG̃

aµν . (97)

Adding a dynamical axion field has a non-trivial consequence for the θ-term. Be-
cause QCD confines a low energy, the above Lagrangian generates a potential
term for the axion. The best way to see this is to start from Eq. (97) and reverse
the transformations from Eqs. (88) to (90). This can remove the above θ-term
Lagrangian but generates a quark-axion coupling term

−mqe
i(θ̄+a/fa)q̄LqR + h.c. . (98)

We can treat mqe
i(θ+a/fa) as the quark mass and match it to chiral perturbation

theory. As we know, the effective Lagrangian that generate meson masses take the
form

Lm =
1

4
B0f

2
πTr (MqU) + h.c. , (99)

where the matrix U contains pseudo-Goldstone bosons due to spontaneous chiral
symmetry breaking. In the case of two light quarks u, d, which corresponds to
SU(2)L × SU(2)R → SU(2)V breaking, we have

U = exp

[
i

fπ

(
π0

√
2π+

√
2π− −π0

)]
, Mq =

(
mue

i(θ̄+a/fa)/2 0

0 mde
i(θ̄+a/fa)/2 .

)
(100)

At low energies, pions will be integrated out. The π± fields must be set to zero
to preserve U(1) electromagnetism, but we need to do a bit more work on the π0

field with the remaining scalar potential

V (π0, a) = −Lm(π0, π± = 0, a)

= − f 2
πm

2
π

2(mu +md)

[
mu cos

(
π0

fπ
+ θ̄ +

a

fa

)
+md cos

(
−π

0

fπ
+ θ̄ +

a

fa

)]
.

(101)

Before integrating out π0, we need to minimize the potential with respect to it
(treating axion field as a background). This amounts to

sin
π0

fπ
=

(md −mu) sin
(
θ̄
2

+ a
2fa

)
√
m2
u +m2

d + 2mumd cos
(
θ̄ + a

fa

) ,

cos
π0

fπ
=

(md +mu) cos
(
θ̄
2

+ a
2fa

)
√
m2
u +m2

d + 2mumd cos
(
θ̄ + a

fa

) .

(102)
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Plugging these back to the potential, we finally obtain

V (a) = −m
2
πf

2
π

2

√
1− 4mumd

(mu +md)2
sin2

(
θ̄

2
+

a

2fa

)
. (103)

Eq. (103) is the axion potential. A plot of it is shown in Fig. 9 below. It
is periodic. The height of the barrier between two minima is dictated by the
QCD scale. Clearly, we should minimize the potential energy, which leads to a
vacuum expectation value for the axion field 〈a〉 = −faθ̄. This ensures the overall
coefficient of the θ-term in Eq. (97) to vanish, thus solves the strong CP problem.
Today we live around one of the minima.
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Fig. 9. Low Energy axion potential.

The parameter fa is the axion decay constant. As will be seen below, for axion
to be the dark matter, fa has to be much higher than the QCD scale. Expanding
the potential up to quadratic terms in a, we can obtain the axion mass

m =
mπfπ√

2fa

√
mumd

mu +md

∼ 10−5 eV

(
1012 GeV

fa

)
. (104)

The benchmark value fa = 1012 GeV is motivated by axion dark matter relic
density. It corresponds to a very small axion mass. As a number useful to re-
member, using the relation 10−5 eV ' 1cm−1, and dark matter velocity in the
galaxy is v ∼ 10−3c, we derive the de Broglie wavelength of axion dark matter is
λ = h/(mv) ∼ 103 cm, which is a macroscopic length scale.

The coupling of axion to QCD not only generates a potential for it. This
framework also provides a unique mechanism of generating the axion dark mat-
ter relic abundance in the early universe – the misalignment mechanism. For
pioneering works see https://inspirehep.net/literature/179499, https://

inspirehep.net/literature/12562, https://inspirehep.net/literature/179461.

To discuss the mechanism, we should start early in the universe, and consider
the axion field equation of motion Eq. (79) in a different limit, where H � m. This

https://inspirehep.net/literature/179499
https://inspirehep.net/literature/12562
https://inspirehep.net/literature/12562
https://inspirehep.net/literature/179461
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occurs in very early universe when the temperature of the universe is sufficiently
high. In fact, the axion potential found in Eq. (103) becomes highly suppressed
(not strictly zero, see below) when the temperature of the universe is well above
the QCD scale. In this case, the equation of motion

ä+ 3Hȧ+m2a = 0 , (105)

is an over-damped oscillator. Independent of the initial conditions, the axion field
a will quickly stop evolving and get stuck at somewhere. The field value does not
necessarily coincide with where the future potential Eq. (103) is minimized. In
general, a/fa has an O(1) displacement from the minimum.

This field displacement is interesting cosmologically. Indeed, as the tempera-
ture cools and the axion mass becomes important, the axion field will find itself not
at the minimum of the potential, it will start to roll toward the nearest minimum
around the time when Hubble drops below its mass. The onset of the rolling is
approximately when H = m, after which the oscillator becomes under-damped.

As another subtle fact, the axion potential does not strictly vanish at T
above the QCD scale. There are non-perturbative instanton contributions. The
temperature-dependent axion mass takes the following forms

m(T ) ∼


Λ2
QCD

fa

Λ4
QCD

T 4 for T > ΛQCD

Λ2
QCD

fa
for T ≤ ΛQCD

(106)

It is straightforward to show that at T = ΛQCD, the Hubble parameter is already
much smaller than m, as long as fa � Mpl. This the H = m condition occurs at
a higher temperature,

Ti =

(
Mpl

fa

)1/6

ΛQCD, Ai = O(1)fa . (107)

This is the initial condition for the axion rolling.

Because of the temperature (or time) dependence in the axion mass, we need
to solve Eq. (81) more carefully, by taking into account of the potentially significant
time dependence in m. For the temperature window ΛQCD < T < Ti, we plug in

a(t) = A(t) sin
(
m(t)t+ δ

)
, (108)

as the solution to Eq. (81). Because the universe is radiation dominated for the
time epoch we are interested in here, we have m ∝ T−4 ∝ t2. As a result,
ṁ(t) = 4Hm(t) and m̈(t) = 8H2m(t), where we also used t = 1/(2H) for ra-
diation domination. With these, we derive the following two equations

Ä+ 3HȦ− 8m2A = 0 ,

Ȧ = −7

2
HA .

(109)
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Considering the second equation is sufficient for our discussion here, which implies

A(t) ∼ R(t)−7/2 , (110)

for ΛQCD < T < Ti. Together with the initial condition Eq. (107), we can obtain

A(T = ΛQCD) = Ai

(
R(T = ΛQCD)

Ri

)−7/2

= Ai

(
ΛQCD

Ti

)7/2

. (111)

At temperatures below ΛQCD, the axion mass become time independent. Therefore,
our late-time solutions Eq. (83) applies, with A ∼ R−3/2. This allows us to obtain
the axion oscillation amplitude today

A(T0) = A(T = ΛQCD)

(
T0

ΛQCD

)3/2

= Ai

(
ΛQCD

Ti

)7/2(
T0

ΛQCD

)3/2

. (112)

Use the energy density definition, Eq. (87), we can derive the axion energy
density today

ρ0
a =

1

2
m2A(T0)2 =

1

2
m2f 2

a

(
ΛQCD

Ti

)7(
T0

ΛQCD

)3

, (113)

where we have set Ai = fa up to the order one coefficient in Eq. (107). The next
step is to plug in the solution for Ti in Eq. (107), which leads to

ρ0
a =

1

2
m2f 2

a

(
fa
Mpl

)7/6(
T0

ΛQCD

)3

. (114)

Numerically, using mfa ∼ mπfπ ∼ Λ2
QCD ∼ (100 MeV)2, T0 = 2.7 K, and the

critical density of the universe today, ρ0
c = 1.05× 10−5h2 GeV/cm3, we get

Ω0
ah

2 = 0.12

(
fa

2× 1012GeV

)7/6

. (115)

Therefore, the cosmologically favored axion decay constant is of order fa ∼ 1012 GeV.
This also explains the benchmark value for fa in Eq. (104).

Another important consequence of such a high decay constant is that the
axion coupling to gluons (and SM particles in general) is highly suppressed. It
implies that the axion is not in thermal equilibrium with standard model particles
at T � fa. There is very little axion particle production from collisions. Thus the
misalignment mechanism we discussed above provides the dominant contribution
to the axion relic abundance.

For the remainder of this lecture, we briefly discuss how to probe axion dark
matter experimentally. Although the axion mass and relic abundance are closely
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related to its coupling to the gluon fields (see Eq. (96)), many ways of detecting
the axion is through its coupling to photons, of the form

a

fa
FµνF̃

µν . (116)

In UV complete models that generates aGG̃ operator at low energy, it is quite
generic that the aF F̃ operator is also generated. This is the case in the two most
popular class of UV completions, the KSVZ and DFSZ axion models.

As far as I know, people are better at manipulating electromagnetic field than
gluons experimentally. In a nutshell, the axion photon coupling above is equivalent
to

a

fa
~E · ~B . (117)

As one application, in the presence of an external magnetic field ( ~B has a vacuum

condensate, 〈 ~B〉), the above operator becomes a quadratic term which can generate
a mixing between the axion and photon fields. This allows the conversion of axion
dark matter into an electromagnetic field, which is a microwave for ma = 10−5 eV.
This is the experimental idea behind the ADMX experiment, following the pioneer
proposal by P. Sikivie, https://inspirehep.net/literature/13732. For lighter
axion, the converted photon wavelength is longer. One need to build large cavity
for detecting the photon. This implies a limitation of the ADMX experiment to
probe smaller axion masses.

We will not go into much details here. For recent nice reviews on various
existing and ongoing experimental searches for axion, see https://arxiv.org/

pdf/1801.08127.pdf and https://arxiv.org/pdf/1602.00039.pdf. This is a
very exciting frontier.

Fig. 10. Axion searches.

� The end.
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